Olfactory fear conditioning induces field potential potentiation in rat olfactory cortex and amygdala.
نویسندگان
چکیده
The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of plasticity in the olfactory pathway. Training consisted of a single training session including six pairings of an odor CS with a mild foot-shock unconditioned stimulus (US). Twenty-four hours later, the animals were tested for retention of the CS as assessed by the amount of freezing exhibited in the presence of the learned odor. Behavioral data showed that trained animals exhibited a significantly higher level of freezing in response to the CS than control animals. In the same animals, EFPs were recorded in parallel in the anterior piriform cortex (aPC), posterior piriform cortex (pPC), cortical nucleus of the amygdala (CoA), and basolateral nucleus of the amygdala (BLA) following electrical stimulation of the olfactory bulb. Specifically, EFPs recorded before (baseline) and after (during the retention test) training revealed that trained animals exhibited a lasting increase (present before and during presentation of the CS) in EFP amplitude in CoA, which is the first amygdaloid target of olfactory information. In addition, a transient increase was observed in pPC and BLA during presentation of the CS. These data indicate that the olfactory and auditory fear-conditioning neural networks have both similarities and differences, and suggest that the fear-related behaviors in each sensory system may have at least some distinct characteristics.
منابع مشابه
Adult depression-like behavior, amygdala and olfactory cortex functions are restored by odor previously paired with shock during infant's sensitive period attachment learning
Maltreatment from the caregiver induces vulnerability to later life psychopathologies, yet attraction and comfort is sometimes provided by cues associated with early life maltreatment. We used a rat model of early life maltreatment with odor-0.5 mA shock conditioning to produce depressive-like behaviors and questioned whether stimuli associated with maltreatment would restore emotional neurobeh...
متن کاملExtinction reverses olfactory fear-conditioned increases in neuron number and glomerular size.
Although much work has investigated the contribution of brain regions such as the amygdala, hippocampus, and prefrontal cortex to the processing of fear learning and memory, fewer studies have examined the role of sensory systems, in particular the olfactory system, in the detection and perception of cues involved in learning and memory. The primary sensory receptive field maps of the olfactory...
متن کاملOpioid modulation of Fos protein expression and olfactory circuitry plays a pivotal role in what neonates remember.
Paradoxically, fear conditioning (odor-0.5 mA shock) yields a learned odor preference in the neonate, presumably due to a unique learning and memory circuit that does not include apparent amygdala participation. Post-training opioid antagonism with naltrexone (NTX) blocks consolidation of this odor preference and instead yields memory of a learned odor aversion. Here we characterize the neural ...
متن کاملDifferential regional expression of brain-derived neurotrophic factor following olfactory fear learning.
We examined brain-derived neurotrophic factor (BDNF) mRNA expression across the olfactory system following fear conditioning. Mice received 10 pairings of odor with footshock or equivalent unpaired odors and shocks. We found increased BDNF mRNA in animals receiving paired footshocks in the multiple regions examined including the posterior piriform cortex (PPC) and basolateral amygdala (BLA). Th...
متن کاملLearning to smell danger: acquired associative representation of threat in the olfactory cortex
Neuroscience research over the past few decades has reached a strong consensus that the amygdala plays a key role in emotion processing. However, many questions remain unanswered, especially concerning emotion perception. Based on mnemonic theories of olfactory perception and in light of the highly associative nature of olfactory cortical processing, here I propose a sensory cortical model of o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Learning & memory
دوره 11 6 شماره
صفحات -
تاریخ انتشار 2004